io 包为I/O原语提供了基本的接口。它主要包装了这些原语的已有实现。

由于这些接口和原语以不同的实现包装了低级操作,因此除非另行通知,否则客户端不应假定它们对于并行执行是安全的。

在io包中最重要的是两个接口:

Reader和Writer接口。

本章所提到的各种IO包,都跟这两个接口有关,也就是说,只要实现了这两个接口,它就有了IO的功能。

Reader接口Reader接口的定义如下:

type Reader interface {    Read(p []byte) (n int, err error)}

官方文档中关于该接口方法的说明:

Read 将 len(p) 个字节读取到 p 中。

它返回读取的字节数 n(0 <= n <= len(p)) 以及任何遇到的错误。

即使 Read 返回的 n < len(p),它也会在调用过程中使用 p 的全部作为暂存空间。

若一些数据可用但不到 len(p) 个字节,Read 会照例返回可用的数据,而不是等待更多数据。

当 Read 在成功读取 n > 0 个字节后遇到一个错误或EOF(end-of-file),它就会返回读取的字节数。

它会从相同的调用中返回(非nil的)错误或从随后的调用中返回错误(同时 n == 0)。

一般情况的一个例子就是 Reader 在输入流结束时会返回一个非零的字节数,同时返回的err不是EOF就是nil。

无论如何,下一个 Read 都应当返回 0, EOF。

调用者应当总在考虑到错误 err 前处理 n > 0 的字节。

这样做可以在读取一些字节,以及允许的 EOF 行为后正确地处理I/O错误。

也就是说,当Read方法返回错误时,不代表没有读取到任何数据。

调用者应该处理返回的任何数据,之后才处理可能的错误。

根据Go语言中关于接口和实现了接口的类型的定义(Interface_types),

我们知道Reader接口的方法集(Method_sets)只包含一个Read方法,因此,所有实现了Read方法的类型都实现了io.Reader接口,

也就是说,在所有需要io.Reader的地方,可以传递实现了Read()方法的类型的实例。

下面,我们通过具体例子来谈谈该接口的用法。

func ReadFrom(reader io.Reader, num int) ([]byte, error) {
    p := make([]byte, num)
    n, err := reader.Read(p)
    if n > 0 {
    return p[:n], nil
    }
    return p, err
}

ReadFrom函数将io.Reader作为参数,也就是说,ReadFrom可以从任意的地方读取数据,只要来源实现了io.Reader接口。

比如,我们可以从标准输入、文件、字符串等读取数据,示例代码如下:

// 从标准输入读取
data, err = ReadFrom(os.Stdin, 11)
// 从普通文件读取,其中file是os.File的实例
data, err = ReadFrom(file, 9)
// 从字符串读取
type Writer interface {
    Write(p []byte) (n int, err error)
}

完整的演示例子源码见

https://github.com/polaris1119/The-Golang-Standard-Library-by-Example/blob/master/code/src/chapter01/io/reader.go

小贴士

io.EOF 变量的定义:var EOF = errors.New(“EOF”),是error类型。

根据reader接口的说明,在 n > 0 且数据被读完了的情况下,返回的error有可能是EOF也有可能是nil。

Writer接口Writer接口的定义如下:

type Writer interface {
    Write(p []byte) (n int, err error)
}

官方文档中关于该接口方法的说明:

Write 将 len(p) 个字节从 p 中写入到基本数据流中。

它返回从 p 中被写入的字节数 n(0 <= n <= len(p))以及任何遇到的引起写入提前停止的错误。

若 Write 返回的 n < len(p),它就必须返回一个非nil的错误。

同样的,所有实现了Write方法的类型都实现了io.Writer接口。

在上个例子中,我们是自己实现一个函数接收一个io.Reader类型的参数。这里,我们通过标准库的例子来学习。

在fmt标准库中,有一组函数:Fprint/Fprintf/Fprintln,它们接收一个io.Wrtier类型参数(第一个参数),

也就是说它们将数据格式化输出到io.Writer中。那么,调用这组函数时,该如何传递这个参数呢?

我们以fmt.Fprintln为例,同时看一下fmt.Println函数的源码。

func Println(a ...interface{}) (n int, err error) {
    return Fprintln(os.Stdout, a...)
}

实现了io.Reader接口或io.Writer接口的类型初学者看到函数参数是一个接口类型,很多时候有些束手无策,不知道该怎么传递参数。

还有人问:标准库中有哪些类型实现了io.Reader或io.Writer接口?

var (
    Stdin  = NewFile(uintptr(syscall.Stdin), "/dev/stdin")
    Stdout = NewFile(uintptr(syscall.Stdout), "/dev/stdout")
    Stderr = NewFile(uintptr(syscall.Stderr), "/dev/stderr")
)

通过本节上面的例子,我们可以知道,os.File同时实现了这两个接口。

我们还看到 os.Stdin/Stdout这样的代码,它们似乎分别实现了 io.Reader/io.Writer接口。

没错,实际上在os包中有这样的代码:

var (
    Stdin  = NewFile(uintptr(syscall.Stdin), "/dev/stdin")
    Stdout = NewFile(uintptr(syscall.Stdout), "/dev/stdout")
    Stderr = NewFile(uintptr(syscall.Stderr), "/dev/stderr")
)

也就是说,Stdin/Stdout/Stderr 只是三个特殊的文件(即都是os.File的实例),自然也实现了io.Reader和io.Writer。

目前,Go文档中还没发直接列出实现了某个接口的所有类型。

不过,我们可以通过查看标准库文档,列出实现了io.Reader或io.Writer接口的类型(导出的类型):

os.File 同时实现了io.Reader和io.Writer
strings.Reader 实现了io.Reader
bufio.Reader/Writer 分别实现了io.Reader和io.Writer
bytes.Buffer 同时实现了io.Reader和io.Writer
bytes.Reader 实现了io.Reader
compress/gzip.Reader/Writer 分别实现了io.Reader和io.Writer
crypto/cipher.StreamReader/StreamWriter 分别实现了io.Reader和io.Writer
crypto/tls.Conn 同时实现了io.Reader和io.Writer
encoding/csv.Reader/Writer 分别实现了io.Reader和io.Writer
mime/multipart.Part 实现了io.Reader

除此之外,io包本身也有这两个接口的实现类型。如:

实现了Reader的类型:LimitedReader、PipeReader、SectionReader

实现了Writer的类型:PipeWriter以上类型中,常用的类型有:os.File、strings.Reader、bufio.Reader/Writer、bytes.Buffer、bytes.Reader

小贴士

从接口名称很容易猜到,一般地,Go中接口的命名约定:接口名以er结尾。

注意,这里并非强行要求,你完全可以不以 er 结尾。标准库中有些接口也不是以 er 结尾的。

ReaderAt和WriterAt接口ReaderAt接口的定义如下:

type ReaderAt interface {
    ReadAt(p []byte, off int64) (n int, err error)
}

官方文档中关于该接口方法的说明:

ReadAt 从基本输入源的偏移量 off 处开始,将 len(p) 个字节读取到 p 中。

它返回读取的字节数 n(0 <= n <= len(p))以及任何遇到的错误。

当 ReadAt 返回的 n < len(p) 时,它就会返回一个非nil的错误来解释 为什么没有返回更多的字节。

在这一点上,ReadAt 比 Read 更严格。

即使 ReadAt 返回的 n < len(p),它也会在调用过程中使用 p 的全部作为暂存空间。

若一些数据可用但不到 len(p) 字节,ReadAt 就会阻塞直到所有数据都可用或产生一个错误。 在这一点上 ReadAt 不同于 Read。

若 n = len(p) 个字节在输入源的的结尾处由 ReadAt 返回,那么这时 err == EOF 或者 err == nil。

若 ReadAt 按查找偏移量从输入源读取,ReadAt 应当既不影响基本查找偏移量也不被它所影响。

ReadAt 的客户端可对相同的输入源并行执行 ReadAt 调用。

可见,ReaderAt接口使得可以从指定偏移量处开始读取数据。

简单示例代码如下:

reader := strings.NewReader("Go语言学习园地")
p := make([]byte, 6)
n, err := reader.ReadAt(p, 2)
if err != nil {
    panic(err)
}
fmt.Printf("%s, %d\n", p, n)

WriterAt接口的定义如下:

type WriterAt interface {
    WriteAt(p []byte, off int64) (n int, err error)
}

官方文档中关于该接口方法的说明:

WriteAt 从 p 中将 len(p) 个字节写入到偏移量 off 处的基本数据流中。

它返回从 p 中被写入的字节数 n(0 <= n <= len(p))以及任何遇到的引起写入提前停止的错误。

若 WriteAt 返回的 n < len(p),它就必须返回一个非nil的错误。

若 WriteAt 按查找偏移量写入到目标中,WriteAt 应当既不影响基本查找偏移量也不被它所影响。

若区域没有重叠,WriteAt 的客户端可对相同的目标并行执行 WriteAt 调用。

我们可以通过该接口将数据写入数据流的特定偏移量之后。

通过简单示例来演示WriteAt方法的使用(os.File实现了WriterAt接口):

file, err := os.Create("writeAt.txt")
if err != nil {
    panic(err)
}
defer file.Close()
file.WriteString("Golang中文社区——这里是多余的")
n, err := file.WriteAt([]byte("Go语言学习园地"), 24)
if err != nil {
    panic(err)
}
fmt.Println(n)

打开文件WriteAt.txt,内容是:Golang中文社区——Go语言学习园地。

分析:

file.WriteString(“Golang中文社区——这里是多余的”) 往文件中写入Golang中文社区——这里是多余的

之后file.WriteAt([]byte(“Go语言学习园地”), 24) 在文件流的offset=24处写入Go语言学习园地(会覆盖该位置的内容)。

ReaderFrom 和 WriterTo 接口ReaderFrom的定义如下:

type ReaderFrom interface {
    ReadFrom(r Reader) (n int64, err error)
}

官方文档中关于该接口方法的说明:

ReadFrom 从 r 中读取数据,直到 EOF 或发生错误。

其返回值 n 为读取的字节数。除 io.EOF 之外,在读取过程中遇到的任何错误也将被返回。

如果 ReaderFrom 可用,Copy 函数就会使用它。

注意:ReadFrom方法不会返回err == EOF。

下面的例子简单的实现将文件中的数据全部读取(显示在标准输出):

file, err := os.Open("writeAt.txt")
if err != nil {
    panic(err)
}
defer file.Close()
writer := bufio.NewWriter(os.Stdout)
writer.ReadFrom(file)
writer.Flush()

当然,我们可以通过ioutil包的ReadFile函数获取文件全部内容。

其实,跟踪一下ioutil.ReadFile的源码,会发现其实也是通过ReadFrom方法实现(用的是bytes.Buffer,它实现了ReaderFrom接口)。

如果不通过ReadFrom接口来做这件事,而是使用io.Reader接口,我们有两种思路:

先获取文件的大小(File的Stat方法),之后定义一个该大小的[]byte,通过Read一次性读取

定义一个小的[]byte,不断的调用Read方法直到遇到EOF,将所有读取到的[]byte连接到一起

这里不给出实现代码了,有兴趣的可以实现以下。

提示

通过查看 bufio.Writer或strings.Buffer 类型的ReadFrom方法实现,会发现,其实它们的实现和上面说的第2种思路类似。

WriterTo的定义如下:

type WriterTo interface {
    WriteTo(w Writer) (n int64, err error)
}

官方文档中关于该接口方法的说明:

WriteTo 将数据写入 w 中,直到没有数据可写或发生错误。其返回值 n 为写入的字节数

在写入过程中遇到的任何错误也将被返回。

如果 WriterTo 可用,Copy 函数就会使用它。

读者是否发现,其实ReaderFrom和WriterTo接口的方法接收的参数是io.Reader和io.Writer类型。

根据io.Reader和io.Writer接口的讲解,对该接口的使用应该可以很好的掌握。

这里只提供简单的一个示例代码:将一段文本输出到标准输出

reader := bytes.NewReader([]byte("Go语言学习园地"))
reader.WriteTo(os.Stdout)

通过io.ReaderFrom和io.WriterTo的学习,我们知道,如果这样的需求,可以考虑使用这两个接口:“一次性从某个地方读或写到某个地方去。”

Seeker接口接口定义如下:

type Seeker interface {
    Seek(offset int64, whence int) (ret int64, err error)
}

官方文档中关于该接口方法的说明:

Seek 设置下一次 Read 或 Write 的偏移量为 offset

它的解释取决于 whence: 0 表示相对于文件的起始处,1 表示相对于当前的偏移,而 2 表示相对于其结尾处。

Seek 返回新的偏移量和一个错误,如果有的话。

也就是说,Seek方法用于设置偏移量的,这样可以从某个特定位置开始操作数据流。

听起来和ReaderAt/WriteAt接口有些类似,不过Seeker接口更灵活,可以更好的控制读写数据流的位置。

简单的示例代码:获取倒数第二个字符(需要考虑UTF-8编码,这里的代码只是一个示例)

reader := strings.NewReader("Go语言学习园地")
reader.Seek(-6, os.SEEK_END)
r, _, _ := reader.ReadRune()
fmt.Printf("%c\n", r)

小贴士

whence的值,在os包中定义了相应的常量,应该使用这些常量

const (
    SEEK_SET int = 0 // seek relative to the origin of the file
    SEEK_CUR int = 1 // seek relative to the current offset
    SEEK_END int = 2 // seek relative to the end
)

Closer接口接口定义如下:

type Closer interface {
    Close() error
}

该接口比较简单,只有一个Close()方法,用于关闭数据流。

文件(os.File)、归档(压缩包)、数据库连接、Socket等需要手动关闭的资源都实现了Closer接口。

实际编程中,经常将Close方法的调用放在defer语句中。

小提示

初学者容易写出这样的代码:

file, err := os.Open("studygolang.txt")
defer file.Close()
if err != nil {
    ...
}

当文件 studygolang.txt 不存在或找不到时,file.Close()会panic,因为file是nil。

因此,应该将defer file.Close()放在错误检查之后。

其他接口ByteReader和ByteWriter通过名称大概也能猜出这组接口的用途:读或写一个字节。接口定义如下:

type ByteReader interface {
    ReadByte() (c byte, err error)
}

type ByteWriter interface {
    WriteByte(c byte) error
}

在标准库中,有如下类型实现了io.ByteReader或io.ByteWriter:

bufio.Reader/Writer 分别实现了io.ByteReader和io.ByteWriter
bytes.Buffer 同时实现了io.ByteReader和io.ByteWriter
bytes.Reader 实现了io.ByteReader
strings.Reader 实现了io.ByteReader

接下来的示例中,我们通过bytes.Buffer来一次读取或写入一个字节(主要代码):

var ch byte
fmt.Scanf("%c\n", &ch)

buffer := new(bytes.Buffer)
err := buffer.WriteByte(ch)
if err == nil {
    fmt.Println("写入一个字节成功!准备读取该字节……")
    newCh, _ := buffer.ReadByte()
    fmt.Printf("读取的字节:%c\n", newCh)
} else {
    fmt.Println("写入错误")
}

程序从标准输入接收一个字节(ASCII字符),调用buffer的WriteByte将该字节写入buffer中,之后通过ReadByte读取该字节。

完整的代码见:code/src/chapter01/io/byterwer.go

一般地,我们不会使用bytes.Buffer来一次读取或写入一个字节。那么,这两个接口有哪些用处呢?

在标准库encoding/binary中,实现Google-ProtoBuf中的Varints读取,ReadVarint就需要一个io.ByteReader类型的参数,

也就是说,它需要一个字节一个字节的读取。关于encoding/binary包在后面会详细介绍。

在标准库image/jpeg中,Encode函数的内部实现使用了ByteWriter写入一个字节。

小贴士

可以通过在Go语言源码src/pkg中搜索”io.ByteReader”或”io.ByteWiter”,获得哪些地方用到了这两个接口。

你会发现,这两个接口在二进制数据或归档压缩时用的比较多。

ByteScanner、RuneReader和RuneScanner将这三个接口放在一起,是考虑到与ByteReader相关或相应。

ByteScanner接口的定义如下:

type ByteScanner interface {
    ByteReader
    UnreadByte() error
}

可见,它内嵌了ByteReader接口(可以理解为继承了ByteReader接口),UnreadByte方法的意思是:

将上一次ReadByte的字节还原,使得再次调用ReadByte返回的结果和上一次调用相同,

也就是说,UnreadByte是重置上一次的ReadByte。注意,UnreadByte调用之前必须调用了ReadByte,且不能连续调用UnreadByte。即:

buffer := bytes.NewBuffer([]byte{'a', 'b'})
err := buffer.UnreadByte()
和
buffer := bytes.NewBuffer([]byte{'a', 'b'})
buffer.ReadByte()
err := buffer.UnreadByte()
err = buffer.UnreadByte()

err都非nil,错误为:

bytes.Buffer: UnreadByte: previous operation was not a read

RuneReader接口和ByteReader类似,只是ReadRune方法读取单个UTF-8字符,

返回其rune和该字符占用的字节数。该接口在regexp包有用到。

之前有人在QQ群中问道:

strings.Index(“行业交流群”,“交流”) 返回的是单字节字符的位置:6。

但是想要的是unicode字符的位置:2。

当时以为strings.IndexRune可以,然而IndexRune还不如Index,一方面第二个参数是rune类型;

另一方面返回的结果跟Index是一样的。这里通过RuneReader接口来实现这个需求,代码如下:

// strings.Index的UTF-8版本// 即 Utf8Index("Go语言学习园地", "学习") 返回 4,而不是strings.Index的 8

func Utf8Index(str, substr string) int {
    asciiPos := strings.Index(str, substr)
    if asciiPos == -1 || asciiPos == 0 {
    return asciiPos
    }
    pos := 0
    totalSize := 0
    reader := strings.NewReader(str)
    for _, size, err := reader.ReadRune(); err == nil; _, size, err = reader.ReadRune(){
    totalSize += size
    pos++
    // 匹配到
    if totalSize == asciiPos {
        return pos
    }
    }
    return pos
}

该实现借助了strings.Index。

另外,此处的strings.NewReader可以换成bytes.NewBufferString,

不过,根据strings.NewReader的文档,strings.Reader比bytes.Buffer效率更高,

只是strings.Reader是只读的,而bytes.Buffer是可读写的(从前面介绍的实现的接口可以知道)。

关于bytes和strings包,后面章节会详细介绍。

RuneScanner接口和ByteScanner类似,就不赘述了。

ReadCloser、ReadSeeker、ReadWriteCloser、ReadWriteSeeker、ReadWriter、WriteCloser和WriteSeeker接口

这些接口是上面介绍的接口的两个或三个组合而成的新接口。

例如ReadWriter接口:

type ReadWriter interface {
    Reader
    Writer
}

这是Reader接口和Writer接口的简单组合(内嵌)。

这些接口的作用是:有些时候同时需要某两个接口的所有功能,即必须同时实现了某两个接口的类型才能够被传入使用。

可见,io包中有大量的”小接口”,这样方便组合为”大接口”。

SectionReader 类型SectionReader是一个struct(没有任何导出的字段),实现了 Read, Seek 和 ReadAt,同时,

内嵌了 ReaderAt 接口。结构定义如下:

type SectionReader struct {
    r     ReaderAt  // 该类型最终的 Read/ReadAt 最终都是通过 r 的 ReadAt 实现
    base  int64     // NewSectionReader 会将 base 设置为 off
    off   int64     // 从 r 中的 off 偏移处开始读取数据
    limit int64     // limit - off = SectionReader 流的长度
}

从名称我们可以猜到,该类型读取数据流中部分数据。看一下

func NewSectionReader(r ReaderAt, off int64, n int64) *SectionReader的文档说明就知道了:

NewSectionReader 返回一个 SectionReader,它从 r 中的偏移量 off 处读取 n 个字节后以 EOF 停止。

也就是说,SectionReader 只是内部(内嵌)ReaderAt表示的数据流的一部分:从 off 开始后的n个字节。

这个类型的作用是:方便重复操作某一段(section)数据流;或者同时需要ReadAt和Seek的功能。

由于该类型所支持的操作,前面都有介绍,因此提供示例代码了。

关于该类型在标准库中的使用,我们在 8.5 archive/zip — zip归档访问 会讲到。

LimitedReader 类型LimitedReader 类型定义如下:

type LimitedReader struct {
    R Reader // underlying reader,最终的读取操作通过 R.Read 完成
    N int64  // max bytes remaining
}

文档说明如下:

从 R 读取但将返回的数据量限制为 N 字节。

每调用一次 Read 都将更新 N 来反应新的剩余数量。

也就是说,最多只能返回 N 字节数据。

LimitedReader只实现了Read方法(Reader接口)。

使用示例如下:

content := "This Is LimitReader Example"
reader := strings.NewReader(content)
limitReader := &io.LimitedReader{R: reader, N: 8}
for limitReader.N > 0 {
    tmp := make([]byte, 2)
    limitReader.Read(tmp)
    fmt.Printf("%s", tmp)
}

可见,通过该类型可以达到 只允许读取一定长度数据 的目的。

在io包中,LimitReader 函数的实现其实就是调用 LimitedReader:

func LimitReader(r Reader, n int64) Reader { return &LimitedReader{r, n} }

PipReader 和 PipWriter 类型PipReader(一个没有任何导出字段的struct)是管道的读取端。

它实现了io.Reader和io.Closer接口。

关于 Read 方法的说明:从管道中读取数据。

该方法会堵塞,直到管道写入端开始写入数据或写入端关闭了。

如果写入端关闭时带上了error(即调用CloseWithError关闭),该方法返回的err就是写入端传递的error;否则err为EOF。

PipWriter(一个没有任何导出字段的struct)是管道的写入端。它实现了io.Writer和io.Closer接口。

关于 Write 方法的说明:写数据到管道中。

该方法会堵塞,直到管道读取端读完所有数据或读取端关闭了。

如果读取端关闭时带上了error(即调用CloseWithError关闭),该方法返回的err就是读取端传递的error;否则err为 ErrClosedPipe。

其他方法的使用通过例子一起讲解:

func main() {
    Pipe()
}

func Pipe() {
    pipeReader, pipeWriter := io.Pipe()
    go PipeWrite(pipeWriter)
    go PipeRead(pipeReader)
    time.Sleep(1e7)
}

func PipeWrite(pipeWriter *io.PipeWriter) {
    var (
    i   = 0
    err error
    n int
    )
    data := []byte("Go语言学习园地")
    for _, err = pipeWriter.Write(data); err == nil; n, err = pipeWriter.Write(data) {
    i++
    if i == 3 {
        pipeWriter.CloseWithError(errors.New("输出3次后结束"))
    }
    }
    fmt.Println("close 后输出的字节数:", n, " error:",  err)
}

func PipeRead(pipeReader *io.PipeReader) {
    var (
    err error
    n   int
    )
    data := make([]byte, 1024)
    for n, err = pipeReader.Read(data); err == nil; n, err = pipeReader.Read(data) {
    fmt.Printf("%s\n", data[:n])
    }
    fmt.Println("writer 端 closewitherror后:", err)
}

writer 端 closewitherror后: 输出3次后结束close 后输出的字节数: 20 error: io: read/write on closed pipe

细心的读者可能发现:不是输出3此后结束吗?怎么“Go语言学习园地”却输出了4次?这个问题我们稍候讨论。我们先来分析一下例子代码。

io.Pipe()用于创建创建一个同步的内存管道(synchronous in-memory pipe),

函数签名:

func Pipe() (*PipeReader, *PipeWriter)它将 io.Reader 连接到 io.Writer。

一端的读取匹配另一端的写入,直接在这两端之间复制数据;它没有内部缓存。

它对于并行调用 Read 和 Write 以及其它函数或 Close 来说都是安全的。

一旦等待的I/O结束,Close 就会完成。并行调用 Read 或并行调用 Write 也同样安全: 同种类的调用将按顺序进行控制。稍候我们会分析管道相关的源码。

正因为是*同步*的,因此不能在一个goroutine中进行读和写。

在 PipeWrite 函数中,我们循环往管道中写数据,写第三次时,

我们调用 CloseWithError 方法关闭管道的写入端,之后再一次调用 Write 方法,发现返回了error,于是退出了循环。

可是,从输出结果中,我们发现,最后一次写虽然返回error(返回的n并非0),

但是读取端却能读到最后一次写的数据,这让人很费解。下面我们一起来探索一下相关源码,分析问题的原因。

io 包 管道(pipe) 源码分析从上文知道,PipWriter 和 PipeReader 都没有导出成员。

查看源码发现,两者都只有一个成员:p *pipe,这两种类型的所有方法都是调用了 pipe 类型对应的方法实现的。

pipe类型的定义如下:

// A pipe is the shared pipe structure underlying PipeReader and PipeWriter.

type pipe struct {
    rl    sync.Mutex // gates readers one at a time
    wl    sync.Mutex // gates writers one at a time
    l     sync.Mutex // protects remaining fields
    data  []byte     // data remaining in pending write
    rwait sync.Cond  // waiting reader
    wwait sync.Cond  // waiting writer
    rerr  error      // if reader closed, error to give writes
    werr  error      // if writer closed, error to give reads
}

字段说明:

rl/wl 用于控制同一时刻只能有一个读取器或写入器

l 用于保护其他字段

data 在管道中的数据

rwait/wwait sync.Cond类型(后续会讲解),分别控制读取器或写入器等待

rerr/werr 读取器(写入器)关闭,该错误会被Write(Read)方法返回

pipe的read方法:

func (p *pipe) read(b []byte) (n int, err error) {
    // One reader at a time.(控制一次只能一个读取器)
    p.rl.Lock()
    defer p.rl.Unlock()

    // 保护其他字段的读写
    p.l.Lock()
    defer p.l.Unlock()
    for {
    // Reader端关闭后,再Read,则返回ErrClosedPipe
    if p.rerr != nil {
        return 0, ErrClosedPipe
    }
    // 管道中有数据,退出循环
    if p.data != nil {
        break
    }
    // Writer端关闭,返回p.werr
    if p.werr != nil {
        return 0, p.werr
    }
    // 没有数据或管道没有关闭,读取端等待
    p.rwait.Wait()
    }
    // 管道中有数据,将其copy一份到b中
    n = copy(b, p.data)
    p.data = p.data[n:]
    // 如果管道数据被读光,需要唤醒在等待的Writer
    if len(p.data) == 0 {
    p.data = nil
    p.wwait.Signal()
    }
    return
}

加上的代码注释已经很清楚了,因此不再赘述。

pipe的write方法:

func (p *pipe) write(b []byte) (n int, err error) {
    // pipe uses nil to mean not available
    if b == nil {
    // zero的定义为:var zero [0]byte
    b = zero[:]
    }

    // One writer at a time.
    p.wl.Lock()
    defer p.wl.Unlock()

    p.l.Lock()
    defer p.l.Unlock()
    // 上面说的问题来了:不管三七二十一,一上来些将数据放进管道中
    p.data = b
    // 唤醒在等待的Reader
    p.rwait.Signal()
    for {
    // 数据被读走,退出循环
    if p.data == nil {
        break
    }
    // Reader端关闭,设置err = p.rerr,退出循环
    if p.rerr != nil {
        err = p.rerr
        break
    }
    // Writer端关闭后,再Writer,设置err = ErrClosedPipe
    if p.werr != nil {
        err = ErrClosedPipe
    }
    // 数据没被读走(全部)或管道读取端没关闭,则等待
    p.wwait.Wait()
    }
    // 计算写入的字节数
    n = len(b) - len(p.data)
    p.data = nil // in case of rerr or werr
    return
}

通过上面两个方法的代码注释,应该清楚例子中为啥输出4次了吧?我们再分析一下:

当i == 3,调用CloseWithError之后,程序执行 for 中的 n, err = pipeWriter.Write(data),

根据上面pipe.write方法,p.data 会被设置上数据,这个时候,Reader被唤醒,将数据读走(第4次)。

由于异步,多goroutine,跟调度有关系,这个时候Writer可能在等待,也可能在Reader读完数据后将其唤醒,

总之,Writer会执行到 if p.werr != nil,即例子中Write循环结束;

而Reader被唤醒之后,首先判断的是p.data != nil,而不是 p.werr != nil,因此数据被正常读取,且没错误被返回,

这时执行下一次循环,当然,这时候由于没有Write,且 p.werr != nil,于是Read方法返回err(=p.werr)。

个人认为这是一个bug,已经向官方提出:issue5330,修复处:

在pipe.write方法的defer p.l.Unlock()后面增加如下代码:

// 写端关闭了,不让写入数据
if p.werr != nil {
    p.rwait.Signal()
    err = ErrClosedPipe
    return
}

同时,for循环中如下代码没有必要,删除:

// Writer端关闭后,再Writer,设置err = ErrClosedPipe

if p.werr != nil {
    err = ErrClosedPipe
}

pipe.read方法中,调整检查p.werr和p.data的顺序,即改为:

if p.werr != nil {
    return 0, p.werr
}
if p.data != nil {
    break
}

这样不至于有错误时还把数据读走。

另外,对于管道的close方法(非CloseWithError时),err会被置为EOF。

Copy 和 CopyN 函数Copy 函数的签名:

func Copy(dst Writer, src Reader) (written int64, err error)

函数文档:

Copy 将 src 复制到 dst,直到在 src 上到达 EOF 或发生错误。

它返回复制的字节数,如果有的话,还会返回在复制时遇到的第一个错误。

成功的 Copy 返回 err == nil,而非 err == EOF。

由于 Copy 被定义为从 src 读取直到 EOF 为止,因此它不会将来自 Read 的 EOF 当做错误来报告。

若 dst 实现了 ReaderFrom 接口,其复制操作可通过调用 dst.ReadFrom(src) 实现。

此外,若 dst 实现了 WriterTo 接口,其复制操作可通过调用 src.WriteTo(dst) 实现。

代码:

io.Copy(os.Stdout, strings.NewReader("Go语言学习园地"))直接将内容输出(写入Stdout中)。

我们甚至可以这么做:

package main

import (
    "fmt"
    "io"
    "os"
)

func main() {
    io.Copy(os.Stdout, os.Stdin)
    fmt.Println("Got EOF -- bye")
}

执行:echo “Hello, World” | go run main.go

CopyN 函数的签名:

func CopyN(dst Writer, src Reader, n int64) (written int64, err error)

函数文档:

CopyN 将 n 个字节从 src 复制到 dst。

它返回复制的字节数以及在复制时遇到的最早的错误。

由于 Read 可以返回要求的全部数量及一个错误(包括 EOF),因此 CopyN 也能如此。

若 dst 实现了 ReaderFrom 接口,复制操作也就会使用它来实现。

代码:

io.CopyN(os.Stdout, strings.NewReader("Go语言学习园地"), 8)

Go语言ReadAtLeast 和 ReadFull 函数ReadAtLeast 函数的签名:

func ReadAtLeast(r Reader, buf []byte, min int) (n int, err error)

函数文档:

ReadAtLeast 将 r 读取到 buf 中,直到读了最少 min 个字节为止。

它返回复制的字节数,如果读取的字节较少,还会返回一个错误。

若没有读取到字节,错误就只是 EOF。

如果一个 EOF 发生在读取了少于 min 个字节之后,ReadAtLeast 就会返回 ErrUnexpectedEOF。

若 min 大于 buf 的长度,ReadAtLeast 就会返回 ErrShortBuffer。

对于返回值,当且仅当 err == nil 时,才有 n >= min。

一般可能不太会用到这个函数。使用时需要注意返回的error判断。

ReadFull 函数的签名:

func ReadFull(r Reader, buf []byte) (n int, err error)

函数文档:

ReadFull 精确地从 r 中将 len(buf) 个字节读取到 buf 中。

它返回复制的字节数,如果读取的字节较少,还会返回一个错误。

若没有读取到字节,错误就只是 EOF。如果一个 EOF 发生在读取了一些但不是所有的字节后,ReadFull 就会返回 ErrUnexpectedEOF

对于返回值,当且仅当 err == nil 时,才有 n == len(buf)。

注意该函数和ReadAtLeast的区别:ReadFull 将buf读满;而ReadAtLeast是最少读取min个字节。

WriteString 函数这是为了方便写入string类型提供的函数,函数签名:

func WriteString(w Writer, s string) (n int, err error)

当 w 实现了 WriteString 方法时,直接调用该方法,否则执行w.Write([]byte(s))。

MultiReader 和 MultiWriter 函数这两个函数的定义分别是:

func MultiReader(readers ...Reader) Reader
func MultiWriter(writers ...Writer) Writer

它们接收多个Reader或Writer,返回一个Reader或Writer。

我们可以猜想到这两个函数就是操作多个Reader或Writer就像操作一个。

事实上,在io包中定义了两个非导出类型:mutilReader和multiWriter,它们分别实现了io.Reader和io.Writer接口。

类型定义为:

type multiReader struct {
    readers []Reader
}

type multiWriter struct {
    writers []Writer
}

对于这两种类型对应的实现方法(Read和Write方法)的使用,我们通过例子来演示。

MultiReader的使用:

readers := []io.Reader{
    strings.NewReader("from strings reader"),
    bytes.NewBufferString("from bytes buffer"),
}
reader := io.MultiReader(readers...)
data := make([]byte, 0, 1024)
var (
    err error
    n   int
)
for err != io.EOF {
    tmp := make([]byte, 512)
    n, err = reader.Read(tmp)
    if err == nil {
    data = append(data, tmp[:n]...)
    } else {
    if err != io.EOF {
        panic(err)
    }
    }
}
fmt.Printf("%s\n", data)

from strings readerfrom bytes buffer代码中首先构造了一个io.Reader的slice,

由 strings.Reader 和 bytes.Buffer 两个实例组成,然后通过MultiReader得到新的Reader,循环读取新Reader中的内容。

从输出结果可以看到,第一次调用Reader的Read方法获取到的是slice中第一个元素的内容

……也就是说,MultiReader只是逻辑上将多个Reader组合起来,并不能通过调用一次Read方法获取所有Reader的内容。

在所有的Reader内容都被读完后,Reader会返回EOF。

MultiWriter的使用:

file, err := os.Create("tmp.txt")
if err != nil {
    panic(err)
}
defer file.Close()
writers := []io.Writer{
    file,
    os.Stdout,
}
writer := io.MultiWriter(writers...)
writer.Write([]byte("Go语言学习园地"))

这段程序执行后在生成tmp.txt文件,同时在文件和屏幕中都输出:Go语言学习园地。这和Unix中的tee命令类似。

动手试试

Go实现Unix中tee命令的功能很简单吧。multiWriter的write方法是如何实现的?有兴趣可以自己实现一个,然后对着源码比较一下。

TeeReader函数函数签名如下:

func TeeReader(r Reader, w Writer) ReaderTeeReader 返回一个 Reader,它将从 r 中读到的数据写入 w 中。

所有经由它处理的从 r 的读取都匹配于对应的对 w 的写入。它没有内部缓存,即写入必须在读取完成前完成。任何在写入时遇到的错误都将作为读取错误返回。

也就是说,我们通过Reader读取内容后,会自动写入到Writer中去。例子代码如下:

reader := io.TeeReader(strings.NewReader("Go语言学习园地"), os.Stdout)
reader.Read(make([]byte, 20))

输出结果:

Go语言学习园地这种功能的实现其实挺简单,无非是在Read完后执行Write。

至此,io所有接口、类型和函数都讲解完成。